

Basics of PyCBC

Alexander Nitz (on behalf of the PyCBC team) MPI for Gravitational Physics (Albert Einstein Institute)

PyCBC: Toolkit for Gravitational-wave Data Analysis

- Began in 2011 as a joint project between the MPI for Gravitational Physics (AEI), Syracuse University, and Cardiff University.
 - \circ ~ 5 initial contributors
- Initial goals:
 - python-based (with hooks into lower-level libaries)
 - modular toolkit
 - $\circ \quad \ \ {\rm flexible \ computing \ backends}$
 - take advantage of GPUs / multicore / etc
 - Build replacement for the aging iHOPE analysis (workhorse search pipeline for analysis of initial LIGO data)
- Open-source (github.com/gwastro/pycbc) and community-developed
- > 80 contributors (as of 2020) from dozens of institutions

PyCBC Impact

- "PyCBC Offline" Flagship archival / deep-offline analysis used by LIGO/Virgo/Kagra
 - Determined significance of GW150914
 - \circ used in all observing runs of the 2G ground-based detectors to detect CBCs
- "PyCBC Live" Low-latency detection of gravitational waves
 - \circ Generated skymap (with Bayestar) used for follow-up of GW170817
 - Producing alerts since O2
- "PyCBC Inference" Bayesian estimation of source parameters and evidence
 - \circ dozens of papers using PyCBC Inference or its data products
- \bullet > 200 citations for pycbc codebase

Package Functionality

- core functionality
 - reading detector data
 - \circ data conditioning / deglitching
 - detector response model
 - \circ waveform generation interface
 - interfaces to existing libraries (lalsimulation, TaylorF2e, SEOBNRe)
 - template bank placement
 - \circ matched filtering
 - \circ signal consistency tests
 - \circ candidate ranking statistics
- Documentation
 - <u>https://pycbc.org/pycbc/latest/html/</u>
- Tutorials
 - <u>https://github.com/gwastro/PyCBC-Tutorials</u>

